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Motivation



Nonstable K-Theory for C ∗-Algebras

Unital C ∗-algebra, A

U(A), GL(A)
Carry important information about the

internal structure of the C ∗-algebra, A and

their rich topology has attracted topologists

from the very begining of homotopy theory.

Nonstable K -Theory

Amounts to calculating

πk(U(A)), πk(GL(A))
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Example: The Complex numbers

� U(C) = S1

πm(U(C)) =

Z if m = 1

0 if m ̸= 1

� However, for n > 1, πm(Un(C)) can be very complicated, and

typically has torsion. For instance

π6(U2(C)) = Z12

� By Bott periodicity, if m > 1 and n ≥ m+1
2

πm(Un(C)) =

0 if m even

Z if m odd

4
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Some Observations

� For the group of unitaries of n × n matrix algebra over A,

denoted by Un(A), the homotopy groups πk(Un(A)) change

with respect to the matrix size n, even in simplest case when

A = C.

� In fact, for Mn(C), for 2n ≤ k, πk(Un(C)) remain unknown in

homotopy theory, as the problem is closely related to the

fibration

Un−1(C) → Un(C) → Sn−1

� Bott periodicity gives stabilization results for the above

groups.
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Questions?

� What tools from homotopy theory can be employed to have a

better understanding of πk(U(·)) ?
� Are there C ∗-algebras, for which πk(Un(·)) become stable

invariants, that is

πk(U(·)) ∼= πk(Un(·))

for all n ≥ 1 and for all k ≥ 0 ?

� Are there C ∗-algebras for which the nonstable K -groups

coincide with the usual K -theory groups?
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Unitaries in C ∗-Algebras



The Unitary and the Quasi-Unitary Group

� Let A be a C ∗-algebra (not necessarily unital). Define an

associative composition by

a · b = a+ b − ab

then a ∈ A is said to be a quasi-unitary if

a · a∗ = a∗ · a = 0

� Let Û(A) be the set of all quasi-unitaries in A. Then, Û(A) is
a topological group.

� If B is a unital C ∗-algebra, we write U(B) for the group of

unitaries in B.

� For a C ∗-algebra A, the map Û(A) → U(A+) given by

u 7→ 1− u, is an isomorphism in case A is unital.
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� Let Û(A) be the set of all quasi-unitaries in A. Then, Û(A) is
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Homology Theory on C ∗-Algebras

Definition

For any C ∗-algebra A and any k ≥ 0, we set

Gk(A) := πk(Û(A))

Then

� For each k , Gk is a homotopy invariant functor from the

category of C ∗-algebras to the category of groups.

� Infact, for k ≥ 0, Gk is a continuous homology theory on the

category of C ∗-algebras.

� For a unital C ∗-algebra A, Gk(A) ∼= πk(U(A)).
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K -Stable C ∗-Algebras



K -Stability

Let A be a C ∗-algebra and j ≥ 2. Define ιj : Mj−1(A) → Mj(A) to

be the natural inclusion map

a 7→

(
a 0

0 0

)

Definition (Thomsen, 1991)

A C ∗-algebra A is said to be K-stable if

Gk(ιj) : Gk(Mj−1(A)) → Gk(Mj(A))

is an isomorphism for all k ≥ 0 and all j ≥ 2.

Note:

C is not K -stable. In fact, any finite dimensional C ∗-algebra is not

K -stable.
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Example: The UHF-algebra of type 2∞

A = M2∞ is an inductive limit of

C → M2(C) → M4(C) → M8(C) → . . .

Where the connecting maps are

a 7→

(
a 0

0 a

)

The map ι2 : U(A) → U2(A) is then a homotopy equivalence

because (
x 0

0 y

)
∼h

(
y 0

0 x

)
in U2(B), for any unital C ∗-algebra B.
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Examples of K -Stable C ∗-Algebras

� [Rieffel, 1987] Non-commutative tori Aθ, with θ irrational.

� [Thomsen, 1991] Infinite dimensional, simple AF-algebras

(including the UHF-algebras).

� [Zhang, 1991] Any purely infinite, simple C ∗-algebra

(including the Cuntz algebra On).

� [Jiang, 1997] The Jiang-Su algebra Z.
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Connection to K -Theory

Proposition (Thomsen, 1991)

For any C ∗-algebra A, Gk(K ⊗ A) is naturally isomorphic to

Kk+1(A), k ≥ 0.

Hence, to say that a C ∗-algebra is K -stable, is to say that

Gk(A) ∼= Kk+1(A)

Thus, for A = M2∞ , for each n ∈ N

Gk(Mn(A)) ∼= Kk+1(A) ∼=

Z
[
1
2

]
if k is odd

0 otherwise
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Thus, K -stability gives one of the answer to previously raised

questions. However, in the absence of K -stability, we do not, as

yet, have any good tools to calculate these homotopy groups.
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Rational Homotopy Theory

� It is primarily to remedy this difficulty, that topologists

introduced Rational Homotopy theory.

� Homotopy theory is the study of spaces with homotopy

equivalence. In rational homotopy theory one simplifies these

invariants. Instead of Hn(·) and πn(·), we consider Hn(·;Q)

and πn(·)⊗Q.

Theorem (Sullivan)

Let X be a connected H-space of finite type. Then there exists a

graded vector space V such that

H∗(X ;Q) = ∧V and π∗(X )⊗Q ∼= V ∗

Furthermore, the construction of V is functorial and the above

isomorphism is natural.
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Example: Revisiting the Complex Numbers

For n ∈ N
H∗(Un(C);Q) ∼= ∧(x1, x3, . . . x2n−1)

where xi has degree i . It follows by theorem by Sullivan that

πm(Un(C))⊗Q =

Q if 1 ≤ m ≤ 2n − 1,m odd

0 otherwise
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For the sake of simplicity and ease in computations, along with

looking at nonstable K -groups for a given C ∗-algebra, for m ≥ 1,

we want to understand/possibly compute the rational nonstable

K -groups

Fm(A) := πm(Û(A))⊗Q

for the C ∗-algebra A.
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Rationally K -Stable C ∗-Algebras



Rational K -Stability

Definition

A C ∗-algebra A is said to be rationally K-stable if

Fm(ιj) : Fm(Mj−1(A)) → Fm(Mj(A))

is an isomorphism for all m ≥ 1 and all j ≥ 2.
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Some Comments

� For a rationally K -stable C ∗-algebra A, for m ≥ 1,

Fm(A) ∼= Km+1(A)⊗Q.

� For a C ∗-algebra A, the property of being K -stable implies

being rationally K -stable.

� The converse need not be true in general.

� However, for some classes of C ∗-algebras, like the AF-algebras

and some AT-algebras, the converse also holds true.
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Example

Theorem (Seth, Vaidyanathan, 2021)

There exists a commutative C ∗-algebra which is rationally

K -stable and not K -stable.
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C (X )-Algebras



C (X )-Algebras

Definition

Let X be a compact Hausdorff space and A a unital C ∗-algebra.

A is called a C (X )-algebra if there is a unital ∗-homomorphism

∆ : C (X ) → Z (A)

where Z (A) denotes the centre of A.

In other words, A carries a central C (X )-action.
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Examples

� A := C (X )⊗ D for any unital C ∗-algebra D.

� If γ : D → E ia a ∗-homomorphism, then

A := {(f , g) ∈ C [0, 1]⊗ D ⊕ C [1, 2]⊗ E : γ(f (1)) = g(1)}

is a C [0, 2]-algebra. Pictorially,

•1 E •2

•0 D •1
γ
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Continuous C (X )-algebras

Let A be a C (X )-algebra. For x ∈ X , define

Ix := {f ∈ C (X ) : f (x) = 0}

Then Ix is an ideal of C (X ), so Ix · A is an ideal of A.

Definition

The fiber of A at x is the quotient

Ax :=
A

Ix · A
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Continuous C (X )-algebras

For a ∈ A, define a(x) ∈ Ax to be the image of a in Ax . Define

Na : X → R given by x 7→ ||a(x)||

Definition

A is a continuous C (X )-algebra if each Na is continuous.

In the example above, if A is given by the picture

•1 E •2

•0 D •1
γ

then A is a continuous C [0, 2]-algebra if and only if γ is injective.
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Main Result 1

Theorem (Seth, Vaidyanathan, 2020 (2021))

Let X be a compact metric space of finite covering dimension,

and let A be a continuous C (X )-algebra. If each fiber of A is

K -stable (rationally K -stable), then A is also K -stable (rationally

K -stable).

One may think of this as a permanence property for the class of

K -stable (rationally K -stable) C ∗-algebras.
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Remarks on Main Result

� If X is zero-dimensional, then the metrizability condition on X

may be dropped.

� If X is not metrizable, we may replace covering dimension

with inductive dimension (All notions of dimension coincide

for compact metric spaces).

� That X has finite dimension is crucial for the proof, as it

works by induction on the dimension.
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Extent To Which The Converse Holds

� Let X be a locally compact, Hausdorff space, and A be a

C ∗-algebra. If A is rationally K -stable, then so is C0(X )⊗ A.

The converse is true if X is a finite CW-complex.

� Let X be a finite CW-complex, and A be an AF -algebra.

Then, C (X )⊗ A is K -stable if and only if A is K -stable.
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Application to Crossed Product

C ∗-Algebras



Crossed Product C ∗-Algebras

A group action of G on A is a group homomorphism

α : G → Aut(A)

Given such an action, one constructs a crossed product C ∗-algebra

A⋊α G

Question?

If A is a K -stable or rationally K -stable C ∗-algebra, then can we

impose conditions on α so that A⋊α G also becomes K -stable or

rationally K -stable ?
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Rokhlin Dimension

Definition

Let G be a compact, second countable group, and let A be a

separable C ∗-algebra. We say that an action α : G → Aut(A) has

Rokhlin dimension d (with commuting towers) if d is the least

integer such that, for any pair of finite sets F ⊂ A,K ⊂ C (G ),

and any ϵ > 0, there exist (d + 1) contractive, completely

positive maps

ψ0, ψ1, . . . , ψd : C (G ) → A

satisfying the following conditions:
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1. For f1, f2 ∈ K such that f1 ⊥ f2, ∥ψj(f1)ψj(f2)∥ < ϵ for all

0 ≤ j ≤ d .

2. For any a ∈ F and f ∈ K , ∥ψj(f )a− aψj(f )∥ < ϵ for all

0 ≤ j ≤ d .

3. For any f ∈ K and s ∈ G , ∥αs(ψj(f ))− ψj(σs(f ))∥ < ϵ for all

0 ≤ j ≤ d .

4. For any a ∈ F , ∥
∑d

j=0 ψj(1C(G))a− a∥ < ϵ.

5. For any f1, f2 ∈ K , ∥ψj(f1)ψk(f2)− ψk(f2)ψj(f1)∥ < ϵ for all

0 ≤ j , k ≤ d .

We denote the Rokhlin dimension (with commuting towers) of α

by dimc
Rok(α). If no such integer exists, we say that α has infinite

Rokhlin dimension (with commuting towers), and write

dimc
Rok(α) = +∞.
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Sequentially Split ∗-Homomorphism

Definition

Let A and B be separable C ∗-algebras. A ∗-homomorphism

φ : A → B is said to be sequentially split if, for every compact

set F ⊂ A, and for every ϵ > 0, there exists a ∗-homomorphism

ψ = ψF ,ϵ : B → A such that

∥ψ ◦ ϕ(a)− a∥ < ϵ

for all a ∈ F .
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A Permanence Property

Theorem (Seth, Vaidyanathan, 2021)

Let A and B be separable C ∗-algebras, and φ : A → B be a

sequentially split ∗-homomorphism. If B is rationally K -stable

(K -stable), then so is A.
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Local Approximation Theorem

Theorem (Gardella, Hirshberg, Santiago,2021)

Let G be a compact, second countable group, X be a compact

Hausdorff space and A be a separable C ∗-algebra. Let G ↷ X be

a continuous, free action of G on X , and α : G → Aut(A) be an

action of G on A. Equip the C ∗-algebra C (X ,A) with the

diagonal action of G , denoted by γ. Then, the crossed product

C ∗-algebra C (X ,A)⋊γ G is a continuous C (X/G )-algebra, each

of whose fibers are isomorphic to A⊗K(L2(G )).
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Structure Theorem for Crossed Product C ∗-Algebras

Theorem (Gardella, Hirshberg, Santiago, 2021)

Let α : G → Aut(A) be an action of a compact, second

countable group on a separable C ∗-algebra such that

dimc
Rok(α) <∞. Then, there is exists a compact metric space X

and a free action G ↷ X such that the canonical embedding

ρ : A⋊α G → C (X ,A)⋊γ G

is sequentially split. Furthermore, if G finite dimensional, then X

may be chosen to be finite dimensional as well.

33



Structure Theorem for Crossed Product C ∗-Algebras

Theorem (Gardella, Hirshberg, Santiago, 2021)

Let α : G → Aut(A) be an action of a compact, second

countable group on a separable C ∗-algebra such that

dimc
Rok(α) <∞. Then, there is exists a compact metric space X

and a free action G ↷ X such that the canonical embedding

ρ : A⋊α G → C (X ,A)⋊γ G

is sequentially split. Furthermore, if G finite dimensional, then X

may be chosen to be finite dimensional as well.

33



Main Result 2

Theorem (Seth, Vaidyanathan, 2021)

Let α : G → Aut(A) be an action of a compact Lie group on a

separable C ∗-algebra A such that dimc
Rok(α) <∞. If A is

K -stable (rationally K -stable), then so is A⋊α G .
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Proof of Main Result 2

� We first discuss the case of K -stability. Rational K -stability

follows similarly.

� Let X be the (finite dimensional) metric space space obtained

from the structure theorem for crossed product C ∗-algebra.

� By the local approximation theorem, C (X ,A)⋊γ G is a

continuous C (X/G )-algebra, each of whose fibers are

isomorphic to A⊗K(L2(G )), and are hence K -stable.

� Since X is compact and metrizable, so is X/G . Furthermore,

since G is a compact Lie group, it follows that

dim(X/G ) ≤ dim(X ) <∞

� By main result 1, we conclude that C (X ,A)⋊γ G is K -stable,

and hence A⋊α G is K -stable as a consequence of the

permanence property of sequentially split ∗-homomorphism.
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� By the local approximation theorem, C (X ,A)⋊γ G is a

continuous C (X/G )-algebra, each of whose fibers are

isomorphic to A⊗K(L2(G )), and are hence K -stable.

� Since X is compact and metrizable, so is X/G . Furthermore,

since G is a compact Lie group, it follows that

dim(X/G ) ≤ dim(X ) <∞

� By main result 1, we conclude that C (X ,A)⋊γ G is K -stable,

and hence A⋊α G is K -stable as a consequence of the

permanence property of sequentially split ∗-homomorphism. 35



Summary Of The Talk

� Given a C ∗-algebra A, we are interested in understanding its

nonstable K -groups.

� K -stability and rational K -stability both turn out to be

effective tools in understanding the above groups.

� We saw that many interesting simple C ∗-algebras are

K -stable, hence rationally K -stable. Thus, we wanted to

enlarge this class by adding non simple C ∗-algebras to it.

� To this end, we showed that the property of K -stability

(rational K -stability) passes from the fibers to the ambient

algebra provided the underlying space is compact, metrizable

and of finite covering dimension
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Summary Of The Talk

� Next we saw an application of this result to crossed product

C ∗-algebras.

� We saw that the class of K -stable (rational K -stable)

C ∗-algebras is closed under the formulation of certain crossed

product C ∗-algebras.

� In particular we saw, if an action of compact lie group on a

separable C ∗-algebra has finite Rokhlin dimension (with

commuting towers), if A is K -stable (rationally K -stable) then

so is the crossed product C ∗-algebra.
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Thank you for your time.
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